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ABSTRACT 
The authors 1  previously showed that a complex layered 
performance model could be simplified by aggregating the 
contributions of subsystems, following a few simple principles 
which give good accuracy in many cases. The question of which 
subsystems to merge in layered performance models is further 
examined here, leading to identifying groups of subsystems 
(corresponding to “tasks” in layered queuing models) which can 
be safely aggregated. The grouping begins by identifying tasks 
which should be preserved, not aggregated, including those 
which are (or might become) bottlenecks. Then the groups are 
defined by their relationship to these preserved tasks. 
Aggregation by groups provides adequate accuracy in the vast 
majority of cases examined. 

CCS CONCEPTS 
• Software and its engineering → Software performance.  

KEYWORDS 
Performance Models, Layered Queuing Network Models, Model 
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1 INTRODUCTION 
Analytic performance models are powerful tools to predict the 
performance and scalability of a system before it is completed 
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and deployed, and methods have been devised to create such 
models from software specifications or architectural designs [1], 
[2]. However these models are often more detailed than really 
needed, because they include all the design detail when only 
some details are significant for performance. A simplified model 
would be more useful, provided it retains the detail of the 
significant subsystems. This research is focussed on Layered 
Queueing Network (LQN) models of software systems with 
distributed and layered operations and resources. LQN models 
have the useful property that they retain much of the structure 
of the system, and measures predicted by the model can be 
traced to software entities. The goal of the research is a process 
for automatically simplifying a model to an essential core level 
of detail governed by an accuracy requirement over a range of 
cases. 
The authors previously described a process for aggregating the 
model elements, which in some cases could reduce a model to 
just two or three elements with little loss of accuracy [3]. This 
paper describes a more flexible and robust process. 
The paper considers layered queuing (LQ) models of service   
systems with a single class of users, and with distributed and 
layered operations and resources. 

2 Layered Queueing Network (LQN) 
Performance Models 

The role of performance models is to make predictions for the 
performance of systems that do not yet exist, either using a 
model derived from a specification [1], or by studying 
modifications of an existing system and model [2]. Queueing 
models are used because they account for the effect of 
contention for resources, which is important in systems under 
load, and layered queueing network models (LQNs) are adapted 
to layered software systems. Fig. 1 shows an example LQN of a 
three-tiered web application, discussed further below. 
An LQN model describes the interaction of system-elements 
(which may be any kind of software or hardware entity) via 
requests for service from one entity to another. The entities in 
the model are called tasks (analogous to objects) which accept 
service requests as calls made to entries (analogous to methods). 
Calls may be procedure calls, RPCs, or synchronous or 
asynchronous messages over a network. Each task is executed by 
its host (processor) which may be multi-core or a multiprocessor. 
Tasks may be multi-threaded, with threads sharing a queue, and 
the threads are scheduled on the host by a host queueing 
discipline.  



Tasks may be used to model software processes and also any 
system features which generate contention, such as mutexes, 
buffer pools, or locks. 
Entry E is part of a task T(E) and has a host demand parameter 
dE (= mean host demand in time units per invocation of E, as 
determined for a “nominal” host type). The call (E1, E2) has a call 
parameter yE1,E2 (= mean calls to E2 per invocation of E1). We 
will only consider calls which block the caller (the calling thread 
waits for the reply after the entry execution is finished), but LQN 
can also model asynchronous calls and calls which are forwarded 
along a chain of tasks for service.  
Task T has a multiplicity mT and a host H(T). Host H has a 
multiplicity mH and a speed factor SH (speed relative to the 
“nominal” host type for which the demand values are found). 
The actual demand of entry E on host H is dE/SH sec. The 
capacity of the host is the product cH = mH SH, with units of 
seconds of “nominal” execution per second; thus a single-core 
nominal host has a capacity of 1.0. In general, entries accept calls 
and also make calls to other tasks, usually at lower layers in a 
layered system. 
A special User task represents the system’s user population, with 
a multiplicity mUser equal to the number of users. The User task 
has a single entry, which may include a thinking time (a pure 
delay ZUser) and one or more calls into the system. One User 
entry execution corresponds to one user response from the 
system. 

               

       Figure 1: LQN model of a three-tier architecture [3] 

Fig. 1 will serve as an example of the LQN notation. In this 
figure, the LQN model has three tasks - Client, WebServer and 
DBServer, each of which is deployed on its own host - ClientH, 
WebH and DbH, respectively. There are 20 users modeled as the 
20-multiplicity task Client running on the 20-multiplicity host 
ClientH. Each user takes a 1000 ms think time (ZUser = 1000) 

between requests. Both WebServer and DBServer are single 
threaded tasks and each has two entries with host service 
demands indicated in braces (i.e. webEntry1 has service demand 
DwebEntry1 = 2 ms). A single user operation includes one request to 
webEntry1 and two to webEntry2.  Storage devices are not shown 
but they can be modeled by a task representing the storage logic 
(read, write operations for example) running on a host 
representing the device.  
This paper focuses its attention on LQNs with: 

• a single User task (there can in principle be more, 
representing different classes of user),  

• calling patterns with no cycles in the call graph,  
• no internal parallelism on execution paths,  
• entries that complete execution before replying (there 

is no “phase-2 execution” in LQN terms). 

2.1 Performance Measures 
The service time XE of entry E is the total mean time to complete 
execution of the entry, including waiting and execution at its 
host H(T(E)), and waiting for a reply for each call. Each call delay 
in turn includes waiting for the called task to accept the request, 
and the entry execution time. Thus XE is not known before the 
queueing delays are found; it is this property that makes layered 
system performance difficult to predict, and drives the use of 
LQN models.  
Some other performance measures predicted by LQN models, 
that we will use, are 

λE, λT = throughput of entry E and task T in 
invocations/s. 

UE, UT, UH = utilization of entry E, task T, host H,  
where in this work utilization is defined as  

UE = λEXE,  
UT = ΣEUE,  
UH = ΣT deployed on H ΣE in T λEdE/SH. 

With this definition the utilization of a task or host ranges from 
zero to its multiplicity value. We also use its saturation level 
which ranges from zero to one, defined as 

Saturation level of resource H = UH / mH. 
Under heavy load the saturation of a bottleneck task or 
processor approaches one. Under lighter load the most saturated 
resource can be identified as the bottleneck. 

2.2 Expectations for Aggregation 
In aggregating LQN tasks and processors, we are aggregating two 
kinds of things: queueing resources (the tasks and processors) and 
customer classes (the entries of the tasks that are aggregated).  
For queueing resources there is a well-established expectation that 
overall queueing delays are reduced when resources are 
aggregated together, which is well-known, for example, if a set of 
identical servers with separate queues are merged into a 
multiserver. However there are no comparable results available for 
layered servers. 
For class aggregation the expected tendency is in the opposite 
direction. An LQN model includes many customer classes, for 
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example, each different operation (entry) of a subsystem (task) is a 
different class of service. In order to simplify the model it is 
necessary to aggregate some of these classes, which introduces 
errors. For certain multi-class queueing models, Dowdy et al 
showed in [4] that a single-class aggregated model always has 
lower overall throughput (and thus longer delay). Although their 
result does not apply to the present models, this result suggests 
that class aggregation at a server may give worse performance. 
Thus the two kinds of aggregation may be expected to produce 
opposite effects in the performance measures of the simplified 
LQN. 

3 Direct Task and Host Aggregation 
We consider an original model M, and methods to aggregate some 
tasks to produce a final model M’. The previous report [3] 
described a process we will call Direct Aggregation, which 
operates directly on the tasks of M. It stated three principles:  

• Capacity limit principle: preserve the capacity limit of 
the model by preserving the bottleneck element(s);  

• Total workload principle: to preserve the total workload 
(CPU operations) per user response; and  

• Concurrency principle: to preserve the total concurrency 
available in software and hardware.  
 

If the host processors are homogeneous, the third principle also 
preserves the total computing capacity of the system. 
In [3] a 4-step procedure was defined to aggregate all the tasks 
except the User, and any tasks identified as bottlenecks. It was 
assumed that all operations completed before replying (no second 
phase operations, in LQN terms) and this assumption is retained 
here. For our purposes the first two steps of that procedure will be 
called Stage 1, producing a Stage-1 aggregated model, and tasks 
which are not aggregated will be called preserved tasks.  
Stage 1 aggregates all activities and entries of a task Ti into a 
single entry as described in [3]. Since each task now has only one 
entry, we can without confusion label the entry parameters dE and 
calls (E1, E2) by the task names, as demand dT and calls (T1, T2). 
The aggregated host-demand and call values at Stage 1 are exact; 
the queueing times in this Stage-1 model have some degree of 
approximation error due to merging of classes, which was 
however found in [3] to often be small. 
Step 3 and 4 in [3] aggregate all the tasks except the bottleneck 
and the User into a single task. Instead, this work identifies 
additional possible preserved tasks, and one or more groups of 
other tasks. It creates an aggregated task for each group, based on 
the following additional principle: 

• Dependency principle: the dependency of a preserved 
task on each original task T will be preserved in M’ as a 
dependency on the aggregated task that includes T. 

This work also introduces a different process for aggregating a 
group of tasks. In [3] this was done incrementally by adding one 
task at a time; here each group is created in a single step. 
 

4 Defining Groups of Tasks for Aggregation 
The tasks that will not be aggregated (the preserved tasks) may 
include:   

1) Bottleneck tasks: It was shown in our previous work that 
aggregating a bottleneck task together with others sometimes 
gives poor accuracy, and this seems to be generally true. Also 
the bottleneck is important in defining the saturation 
properties of a system, so preserving it should preserve those 
properties.  

2) Other highly saturated tasks: If we intend to improve the 
system by mitigating the bottleneck then another task may 
emerge as a candidate “second bottleneck” and it would then 
(for the same reasons) be desirable not to have merged that 
task [3]. In general the candidates for bottlenecks are the 
highest tasks in an ordering based on task saturation level.  

3) Tasks subject to change: We may also choose to keep a task 
out of aggregation if we want to study the effect of major 
changes in that task,   

4) Tasks with key measures: We would like to observe the 
performance measures gathered for that task. In particular 
the measures for the User task define the user-related 
performance measures of the system, and it will always be a 
preserved task. 

5) Tasks deployed on bottleneck processors or highly saturated 
processor: Tasks deployed on bottleneck processors also need 
to be preserved since merging the task (deployed on 
bottleneck processor) with other non-bottleneck tasks 
requires merging the bottleneck processor with other non-
bottleneck processors. For the same reason as mentioned in 
item (1) above for tasks, bottleneck processors are preserved 
in this aggregation. In [3], it has been shown that merging a 
highly utilized/saturated processor can degrade the accuracy. 
So, we may preserve a second bottleneck processor as well as 
the task(s) deployed on it. If there is more than one task 
deployed on a bottleneck processor and none of them is a 
bottleneck task, those tasks can be merged into one task and 
preserved. 

Before defining groups for aggregation we define a set TP = {TP1, 
TP2, ...} of tasks to be preserved. We wish the performance 
measures of these tasks to be well approximated in the aggregated 
model. Therefore we define the groups to preserve the dependency 
of the performance of the preserved tasks, on the tasks that are 
grouped, according to the Dependency Principle above. 

4.1 Tasks Grouped by their Dependencies 
A task T may affect the performance of a preserved task TP 
through delay dependency or by processor contention 
dependency. Delay dependence arises if TP makes a blocking call 
to T directly, or calls intermediary tasks with delay dependency on 
T (that is, if there is a path of blocking calls from TP to T). 
Processor contention dependency arises if T shares a processor 
with TP. Here we focus on the effect of delay dependency by 
restricting the original system to provide a separate host, (possibly 
a virtual machine) for each task, to eliminate processor contention 
dependency.  



A blocking dependency of task T1 on task T2 in an LQ model is 
created by existence of a call path from T1 to T2 (that is, there is a 
direct call from T1 to T2 or indirect calls via one or more other 
tasks). We will define this dependency relative to a set of 
preserved tasks, as: 
Definition: Task T1 is Preserved-Task Dependent (PT-Dependent) 
on task T2 if there is a call path from T1 to T2 that does not pass 
through a preserved task. 
 
We will express this PT-dependency as T1 ≺ T2. We assume that 
the system (and the layered model) does not have cyclical 
dependencies. If task T1 has no dependency relation with T2 we 
can write T1||T2.  
For each task Ti its PT-dependency set Pi is then defined as 

Pi = {P | P ≺ Ti} 
Pi is non-empty for every non-preserved task Ti since every task 
except the User may be called in executing the application, 
therefore it always contains at least the User task.  
 

 

Figure 2: LQN model showing tasks with PT-dependency set 
{P1, P2} 

Fig. 2 shows a model with three preserved tasks in the set TP = {U, 
TP1, TP2}. The three shaded tasks all have the same PT-
dependency set P = {TP1, TP2}. The PT-dependency sets P, one for 
each non-preserved task, partition the non-preserved tasks into 
subsets G(P) which will be a basis for the groups for aggregation. 
All the tasks in G(P) have the same PT-dependency set, and all 
other tasks have different PT-dependency sets. The tasks in a 
particular G(P) have an impact (through blocking calls) on just 
those preserved tasks in subset P, and no others, and in M’ all 
those blocking delay effects are captured approximately by 

blocking calls to a single task TA(G(P)) created by aggregating the 
tasks in G(P).  
The groups and the aggregated tasks are illustrated in Fig. 3 by an 
example “case-A” with three preserved tasks U, TP1 and TP2 

(shown as parallelograms with bold borders). The tasks have four 
different dependency sets: {U}, shown as tasks with no shading, 
{TP1} as tasks with diagonal stripes, {TP2} as tasks with grey 
shading, and {U, TP2} as the one task with diamond shading. Tasks 
with the same shading form a group. 
To simplify the model, each group is aggregated into a single task 
running on its own processor, following the method in [3] as 
modified in the following section. This gives the simplified model 
in Fig. 4. 

 
Figure 3: “case-A” showing groups defined by four distinct 
PT-Dependency sets P = {U}, {TP1}, {TP2}, {U, TP2} 

4.2 Desirable properties of the Aggregation 
Groups 

The model simplification described here is motivated by a desire to 
preserve the essential components of the system, and to make the 
results traceable back to these components, while merging the 
elements that contribute less to the performance result. Direct 
Aggregation as in [3] preserves for each group 

• its total workload 
• the total processing capacity available to it 
• the maximum concurrency of execution threads and cores 

What is new here is: 

• there can be an arbitrary number of preserved tasks, giving 
the modeller flexibility 

• the dependencies of the preserved tasks are also preserved, 
in the following sense. For every preserved task P and 
unpreserved task T: 
o If P depends on T, then in M’ P depends on a merged 

task derived from a group containing T 
o If T depends on P, then a merged task derived from a 

group containing T depends on P. 
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Thus, if we can think of each task as contributing a shadow of 
itself to its merged task, then there is a shadow of every non-
persistent task and the dependencies between the persistent 
tasks and the shadows are preserved in M’. 

5 Aggregation of a Group of Tasks 
We consider a group or subset G of tasks T, each of which has one 
entry (as produced by Stage 1 aggregation) and its own processor 
(as assumed for this paper). T has demand dT and makes an 
average of yT,Ti calls to each other task Ti, each time it is invoked.  
An aggregated task TA(G) is substituted for G, with CPU demand 
DA(G), and yTi ,TA(G) calls coming to TA(G) from each task Ti not 
in G. The calculation of DA and y begins by finding Yi for each 
task Ti in M: 

Yi = mean invocations of Ti per user response, which will 
be called the “total calls” to Ti. 

Total calls Yi for each task Ti is found by setting YUser = 1 (for one 
user response) and solving these equations for all tasks Ti in M: 

Yi = Σi,j (Yj * yTj,Ti) for all tasks Tj calls Ti. 
From this the invocations of G per user response (or “total calls” to 
G) is YA(G): 

YA(G) = Σ Ti ∉  G Σ Tj ∈ G Yi*yTi,Tj 
Then the demand DA(G) is the total demand of G per user 
response, divided by the number of calls to G: 

DA(G) = ΣTj ∈ G (Yj * dTj) / YA(G) 
The number of calls yTA(G), Tk  from TA(G) to target task Tk ∉ G, 
per call into group G, is defined by a weighted average of calls 
from tasks Tj in G, weighted by Yj: 
 yTA(G),Tk = (total calls from G to Tk)/total calls to G 

= ΣTj ϵ G (Yj * yTj,Tk)/YA(G) 
If the target tasks are also members of other groups, the number of 
calls between groups is calculated directly as follows. The number 
of calls from TA(G1) to a task representing another group, say 
TA(G2), is yTA(G1),TA(G2), which is the sum of the calls from 
TA(G1) over tasks Tk in G2, thus: 
 yTA(G1),TA(G2) = ΣTk ϵ G2 ΣTj ϵ G1 [(Yj * yTj,Tk)/YA(G1)] 
An aggregated host HA(TA(G)) is created for the aggregated task 
TA(G), with processing capacity c and multiplicity m, equal to the 
total capacity and multiplicity. In M’ the host HA(TA(G)) has the 
properties: 
 c HA(TA(G)) = Σ Tj ϵ G c(H(Tj)) 

m HA(TA(G)) = Σ{H(T) | Tϵ G} mH(T)  
S HA(TA(G)) = cHA(TA(G))/ mHA(TA(G)) 

Fig. 4 represents an aggregated model of the original model “case-
A” in Fig. 3. The preserved tasks from the original model are 
shown with bold borders. The aggregated model has 7 tasks and 7 
processors whereas the original model in Fig. 3 has 21 tasks and 21 
processors. 

6 Dependency Grouping vs a Single Group 
In [3] a single group of tasks was formed from all the non-
bottleneck tasks. This section shows examples which demonstrate 
the improved accuracy obtained when using the dependency 
groups proposed in this paper. 

        
Figure 4: Aggregated model for “case-A” using the 
dependency groups shown in Fig. 3 
 
First example: Cycle introduced by aggregation 
This example shows the value of the dependency groups proposed 
here. Fig. 5 presents an LQN model called “case-11” with 11 tasks 
and 11 processors. The bottleneck task is t3 with 89.81% saturation 
level, shown with a bold outline. 
Applying the previous aggregation algorithm [3], we get the 
model in Fig. 6. In this model, the bottleneck task t3 and its 
processor p3 are preserved and all other tasks except the user task 
c0 are merged into one task (with one processor). This produces a 
cycle in the call graph as seen in Fig. 6.  
In comparing with the original model, the aggregated model 
generates 100% System throughput error and 3.78E+10% System 
response time error. In fact the calculation did not converge, the 
solver just stopped. The model is structurally different and the 
cycle creates a call explosion and an explosive increase in delay, 
and drop in throughput.  
The simplification algorithm of this paper gives the second 
aggregated model shown in Fig. 7. The bottleneck task t3 is 
preserved, and there are two groups of tasks in the model in Fig. 5 
that are identified by the proposed aggregation algorithm. One 
group is “below” the bottleneck (and produces the MergedTask0 in 
Fig. 7) and the other group is “above” the bottleneck (and produces 
MergedTask1 in Fig. 7). 
To summarize the results: 
Accuracy: Relative absolute error for “case-11” 
Single-group:  100% in throughput,  

3.78E+10% in response time 
Dependency groups based on one bottleneck task:  

23.55% in throughput,  
19.06% in response time 

Task aggregation based on groups provides a much better 
aggregated model, although the error is still large.  
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             Figure 5: LQN model of “case-11” 

 

 
 
                      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: First aggregated model for “case-11” shown in Fig. 
5, following the single-group algorithm of [3] 

                             
Figure 7: Second aggregated model for “case-11” (shown in 
Fig. 5) by generating two groups preserving one bottleneck 
task 
 

Further examination revealed a second highly saturated task t2 
(97.26% saturation level) in “case-11” in Fig. 5 shown in dashed 
outline. Task t2 is a direct caller of the bottleneck task, saturated 
due to pushback (waiting for service that is delayed by 
congestion). Preserving both t2 and t3 gives the third aggregated 
model shown in Fig. 8. 
 

Accuracy: Relative absolute error for “case-11” (continued) 
Dependency groups based on two highly saturated tasks: 
   6.91% in throughput,  

6.47% in response time 
The saturation level of both of the preserved tasks remain 
similar to the original model. Task t2’s and t3’s level of 
saturation are 97.26% (same as original model) and 87.43% 
(changed by 2%) respectively. 
We can draw two lessons from this example, first that it may be 
important to preserve more than one highly saturated task, and 
second that the grouping should avoid aggregations that 
introduce cyclical calls between aggregated entries. Cyclical 
calling changes the structure of the system and totally distorts 
the predictions. 
 
Second Example: Bottleneck Processor 
In the following, we discuss another LQN model “case-41” where 
the model has a bottleneck processor.  
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Figure 8: Third aggregated model for “case-11” by generating 
groups preserving two heavily saturated tasks 

We compare the performance results of single group aggregation 
with dependency grouping. As shown in Fig. 9, the model 
contains 25 tasks and 25 processors along with a reference task 

and its processor. In this model, the bottleneck is the processor 
p09 with 78.35% saturation (shown in bold outline). The task 
deployed on p09 is t09 (also shown in bold outline). Both t09 and 
p09 are preserved in the aggregated model. 
Applying the previous single-group aggregation algorithm [3], 
we get the model presented in Fig. 10, in which the bottleneck 
processor p09 along with its task t09 are preserved and all other 
tasks except the user task c00 are merged into one task (and 
their corresponding processors are merged into one processor). 
In the model of Fig. 10 the System throughput error is 27.57% 
and System response time error is 21.61%, which are substantial. 
Analysis of “case-41” shows that there is a second bottleneck 
task t05 (shown in dashed outline) having 98% saturation which 
is a direct caller of the preserved task t09. Applying the 
simplification algorithm using task dependency groups which 
also preserves the second bottleneck, we get the aggregated 
model as presented in Fig. 11, with 5 tasks and 5 processors 
along with the reference task and its processor.  
The results for the aggregation based on dependency group are 
much better than those for single-group aggregation:  
Accuracy: Relative absolute error for “case-41” 
Single-group:  27.57% in throughput,  

21.61% in response time  
The saturation level of p09 is changed by 27% 

Dependency groups based on two preserved tasks and one 
bottleneck processor: 1.78% in throughput,  

    1.77% in response time 
The saturation of t05 and p09 are 98.33% (changed by 0.34%) and 
79.76% (changed by 1.8%) respectively. 

         
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 9: LQN model “case-41” with bottleneck processor p09 and its deployed task t09 in bold outline and second bottleneck 
task t05 in dashed outline  
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Figure 10: Aggregated LQN model for “case-41” (shown in 
Fig. 9) following the single-group algorithm of [3] 

 
Figure 11: Aggregated model from “case-41” of Fig. 9 by 
generating groups preserving bottleneck processor and a 
second bottleneck task 

7 Empirical Evaluation of Simplification 
Accuracy with Groups 

This section describes experiments on groups of randomly 
generated models, to explore the accuracy of the dependency 
grouping strategy and to identify factors which may degrade the 
accuracy. Models of different total sizes with random structure 
and parameters were generated using the tool lqngen [5]. The 
grouping algorithm was implemented to automatically simplify 

the models, which were solved with the analytic solver LQNS 
[5]. 
Table 1 shows the average absolute errors in system throughput 
and response time for five groups of models of ten models each. 
We run all 50 models with random number of users (call it X 
users).  
To investigate how the reduced model could be used for 
sensitivity studies, the accuracy of predictions for a system with 
twice as many users was also found, and is reported in the table. 
During the generation of these models one additional case was 
created that is treated separately below. 
From the table we see that the average throughput error ranges 
from 3.5% to almost 6% and average response time error ranges 
from 3.4% to almost 5.5% for X users. There is no apparent 
relationship between the model sizes and the average error.  
For 2X users, the errors are mostly slightly larger, but sometimes 
smaller, and in every case very little changed.  

Table 1: Experiments with average throughput and 
response time error 

Random 
LQN models 

Throughput error (%) Response time error (%) 
X users 2X users X users 2X users 

10 models 
with 10 
tasks 

4.5 5.47 4.8 5.25 

10 models 
with 15 
tasks 

3.5 3.45 3.4 3.47 

10 models 
with 20 
tasks 

5.82 5.95 5.37 5.59 

10 models 
with 25 
tasks 

3.52 3.56 3.48 3.53 

10 models 
with 30 
tasks 

5.01 4.33 4.75 4.15 

 
Fig. 12 and 13 show the frequency of absolute System 
throughput error (%) and absolute System response time error 
(%) for 50 models and X users, as in Table 1. From the 
histograms, we see that the frequency of System throughput 
error ranges mostly from 2% to 4% and System response time 
ranges mostly from 0 to 3%. They show that in general smaller 
errors are more frequent than larger errors. From experiments 
on these models, the maximum throughput error we found is 
12.73% and response time error is 11.3%. 
The results given so far understate the errors we found because 
they ignore one outlier. This outlier gives unsatisfactory errors 
in a case which occurred only rarely; this rare case must be 
treated by an extended process which is discussed next. 
 
One Difficult Case: Case X 
One randomly generated case, which we shall call “case-X”, had 
a much larger error when aggregated following the grouping 
strategy: over 49% in response time and over 97% in throughput. 
The initial model and simplification are shown in Fig. 14 and 15. 
Inspection of the details suggests that the error arises partly 
through aggregation of very different classes, both moderately  
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Figure 12: Frequency of absolute System throughput error 
(%) on the 50 models in Table 1 

 

Figure 13: Frequency of absolute System response time error 
(%) on the 50 models in Table 1 

 

Figure 14: Original LQN model “case-X” with 10 tasks and 10 
processors 

 

Figure 15: First Aggregated model of “case-X” from Fig. 14 
preserving task t2 

heavily loaded, in one of the groups. This is an example of the 
known threat of errors due to class aggregation. To deal with 
this threat the method must preserve additional tasks. To show 
that preserving additional tasks is effective, “case-X” was 
aggregated repeatedly with one task added at each step to the 
list of preserved tasks, with the results shown in Table 2. At each 
step, the most saturated non-preserved task or processor was 
chosen to be preserved. We see that we can obtain as small an 
error as we wish. 

Table 2: Errors of Different Aggregations of “case-X” 

Preserved tasks Throughput error (%) Response time error (%) 

{t2} 97.14 49.25 

{t2,t0} 14.29 13.12 

{t2,t0,t5} 8.57 6.8 

{t2,t0,t5,t6} 0 0.12 

8 Scalability 
Since our goal is to simplify large models, a much larger and 
more complex case is included here. Fig. 16 shows a model called 
“case-50” with 50 tasks and 50 processors that was generated 
randomly.  

Table 3: Errors of Different Aggregations of “case-50” 

Figure 
Tasks and 
Processors 

Throughput 
error % 

Response time 
error % 

Figure 17 7 12.73 11.3 

Figure 18 9 4.85 4.63 
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The tasks outlined in bold were preserved based on high 
saturation level. Fig. 17 shows a first aggregated model of “case-
50” with 7 tasks and 7 processors based on preserving only the 
bottleneck task and other highly saturated tasks. If we preserve 

the next most highly saturated resource which is processor p31 
(47.92% saturated) and its deployed task t31 as shown in Fig. 18, 
the error is reduced as shown in Table 3. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

          

          Figure 16: LQN model of “case-50” with 50 tasks and 50 processors 
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Figure 17: First aggregated model of “case-50” with 7 tasks 
and 7 processors 
 
The errors under the simplest task-preservation in the first case 
are barely satisfactory; one improvement step gives a very 
satisfactory accuracy. 
The execution time of the aggregation algorithm was found to be 
1.2 second on average, on a commodity PC. 

9 Related Work 
Various kinds of simplification methods have been used for 
performance models, particularly for queueing models. There is 
a powerful and much-used simplification result in the Norton 
Theorem for Queues [6] which applies to product-form queuing 
networks. By this theorem any subnetwork of queues can be 
replaced by a single server with a state-dependent service rate. 
The replacement is exact in the sense that the throughput and 
delay at the subnetwork interface is the same for the single 
server [3]. The original result was for a single class of customers, 
and it was extended to multiple classes in [7]. 
A flow-equivalent server (FES) [8] is a generalization of this. 
When any submodel is replaced by a FES the entire model is 
smaller and easier to solve, and parameter changes outside the 
submodel can be studied efficiently. Outside of product-form 
queueing networks the simplification is approximate. The FES 
construction method isolates the subnetwork and drives it with a 
fixed number of customers, cycling endlessly; the mean delay of 
a customer in the subnetwork is taken as the service time of the 
FES for that number of customers. This is repeated for every user 
population that it may experience, which does not scale well to 
large systems with thousands of customers [3]. 
 

 
Figure 18: Second aggregated model of “case-50” with 9 
tasks and 9 processors 
 
Hierarchical decomposition as described in [8] applies this 
systematically. In hierarchical decomposition, a large model is 
partitioned into a number of submodels. Each submodel is then 
evaluated and individual solutions are combined to get the 
solution of the original model [8]. In this technique, the system 
is modeled using multiple levels of models. The highest level 
(level 0) of the models consists of a number of FESs, each of 
which represents some portion of the system being modelled. 
The following level contains a number of models that are more 
detailed representation of a subsystem represented in the first 
level as an FES. In general, every level in the hierarchy contains 
more detailed representation of the submodels from previous 
level until the final level (Level L) where all models are fully 
detailed and do not have any FESs. The models in hierarchical 
decomposition should be evaluated from level L to level 0 so that 
the performance projections for the system being modeled are 
obtained from its solution.  
Surrogate delay methods (e.g. [8]) replace a subsystem by a delay 
which is found by solving an auxiliary model. A surrogate delay  
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is somewhat like a FES, but with a fixed delay rather than a 
state-dependent rate. However the construction method is 
different and requires an iterative solution which includes the 
auxiliary model. Surrogate delays are most useful to address 
problems of simultaneous resource possession, but they can also 
be used for model simplification. 
When performance models are fitted by regression methods as in 
[9], a choice must be made for the model structure including the 
level of detail in the model. The modeler can compare the 
goodness of fit of models with more or less detail. Regression 
thus automatically raises the question of detail, and can answer 
it through tests of goodness of fit as discussed in [9]. However 
this approach cannot be applied to models constructed from a 
design before a system is built, because it requires operational 
data for the regression.  
In the Shadow Server method, one service node that violates 
conditions required for efficient, exact analytic solution in 
queuing network model is replaced by two or more servers that 
enable efficient analytic solution, such that the performance 
represents the original server [10]. As an example, a CPU server 
with a priority queue-scheduling discipline can be replaced with 
a shadow CPU server for each priority class, with jobs of 
different priorities being routed to different servers. However, 
this technique does not generate a simpler and smaller model 
than the original one.  
The authors in [11] proposed an estimation technique for 
performance parameters in web based software systems. For web 
based applications, they use a combination of clustering 
algorithm and tracking filter for effective grouping of classes of 
services in layered queuing models. Clustering uses the K-means 
algorithm. The target application is autonomic control of web 
clusters. They considered the application URLs as first class 
entities and each URL request as a class. Their proposed tracking 
approach identifies performance parameters of groups of URLs 
instead of individual URLs. They proposed an algorithm that 
finds the appropriate number of clusters with a pre-defined 
clustering accuracy. For example, if one can accept 17% error, the 
number of needed clusters for estimation would be dropped from 
14 to 9 on average. 
Overall, we are unaware of any prior work on deriving a 
simplified layered queuing model directly from a detailed one, 
apart from our own paper [3]. In particular, there is a lack of 
simplification techniques that avoid the scalability problems of 
calibrating a FES. 

10 Conclusion 
In this paper, a simplification method for LQN model is 
presented which is an improved version of previous work of the 
authors [3]. In this new method, groups of tasks to be aggregated 
are determined based on the dependency relationships between 
the tasks in the groups, and a set of “preserved tasks” which 
should include at least the users and a bottleneck task. The paper 
defines grouping criteria and shows by experiments on 
randomly generated models of various sizes that the throughput 
and response time errors are less than 10% in the vast majority 
of cases. In every case the error can be reduced by adding 

preserved tasks, based on their relative saturation, and can be 
made as small as desired (at the cost of a larger simplified model 
and more complex simplification). The best strategy for adding 
preserved tasks is the subject of current additional research. 
This work has considered only systems with a single class of 
users, and system modules (“tasks”) that do not share a host 
processor. This latter is in line with the practice in cloud 
deployments of giving each module its own virtual machine. 
However current work is considering shared hosts. The 
grouping has also only considered delay dependencies; current 
work is also considering host dependencies.  
The grouping strategies described here address a fundamental 
problem of the required level of detail in modeling, and could be 
applied far beyond the domain of LQN performance models, to 
adjust the detail level of an analysis in real time. 
The LQN models used in the cases of this paper can be found at 
https://github.com/FarhanaIslam/lqnmodels.  
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