
Choice of Aggregation Groups for Layered Performance
Model Simplification*

Farhana Islam
Dept. of Systems and Computer

Engineering
Carleton University

Ottawa, Canada
fislam@sce.carleton.ca

Dorina Petriu
Dept. of Systems and Computer

Engineering
Carleton University

Ottawa, Canada
petriu@sce.carleton.ca

Murray Woodside
Dept. of Systems and Computer

Engineering
Carleton University

Ottawa, Canada
cmw@sce.carleton.ca

ABSTRACT
The authors 1 previously showed that a complex layered
performance model could be simplified by aggregating the
contributions of subsystems, following a few simple principles
which give good accuracy in many cases. The question of which
subsystems to merge in layered performance models is further
examined here, leading to identifying groups of subsystems
(corresponding to “tasks” in layered queuing models) which can
be safely aggregated. The grouping begins by identifying tasks
which should be preserved, not aggregated, including those
which are (or might become) bottlenecks. Then the groups are
defined by their relationship to these preserved tasks.
Aggregation by groups provides adequate accuracy in the vast
majority of cases examined.

CCS CONCEPTS
• Software and its engineering → Software performance.

KEYWORDS
Performance Models, Layered Queuing Network Models, Model
simplification.

ACM Reference format:

F. Islam, D. C. Petriu, C.M. Woodside. 2018. Choice of Aggregation
Groups for Layered Performance Model Simplification. In Proceedings of
9th ACM/SPEC International Conference on Performance Engineering,
Berlin, Germany, April 2018 (ICPE 2018), 12 pages.
https://doi.org/10.1145/3184407.3184411

1 INTRODUCTION
Analytic performance models are powerful tools to predict the
performance and scalability of a system before it is completed

*Produces the permission block, and copyright information
1 Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.
ICPE '18, April 9–13, 2018, Berlin, Germany
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5095-2/18/04…$15.00
https://doi.org/10.1145/3184407.3184411

and deployed, and methods have been devised to create such
models from software specifications or architectural designs [1],
[2]. However these models are often more detailed than really
needed, because they include all the design detail when only
some details are significant for performance. A simplified model
would be more useful, provided it retains the detail of the
significant subsystems. This research is focussed on Layered
Queueing Network (LQN) models of software systems with
distributed and layered operations and resources. LQN models
have the useful property that they retain much of the structure
of the system, and measures predicted by the model can be
traced to software entities. The goal of the research is a process
for automatically simplifying a model to an essential core level
of detail governed by an accuracy requirement over a range of
cases.
The authors previously described a process for aggregating the
model elements, which in some cases could reduce a model to
just two or three elements with little loss of accuracy [3]. This
paper describes a more flexible and robust process.
The paper considers layered queuing (LQ) models of service
systems with a single class of users, and with distributed and
layered operations and resources.

2 Layered Queueing Network (LQN)
Performance Models

The role of performance models is to make predictions for the
performance of systems that do not yet exist, either using a
model derived from a specification [1], or by studying
modifications of an existing system and model [2]. Queueing
models are used because they account for the effect of
contention for resources, which is important in systems under
load, and layered queueing network models (LQNs) are adapted
to layered software systems. Fig. 1 shows an example LQN of a
three-tiered web application, discussed further below.
An LQN model describes the interaction of system-elements
(which may be any kind of software or hardware entity) via
requests for service from one entity to another. The entities in
the model are called tasks (analogous to objects) which accept
service requests as calls made to entries (analogous to methods).
Calls may be procedure calls, RPCs, or synchronous or
asynchronous messages over a network. Each task is executed by
its host (processor) which may be multi-core or a multiprocessor.
Tasks may be multi-threaded, with threads sharing a queue, and
the threads are scheduled on the host by a host queueing
discipline.

Tasks may be used to model software processes and also any
system features which generate contention, such as mutexes,
buffer pools, or locks.
Entry E is part of a task T(E) and has a host demand parameter
dE (= mean host demand in time units per invocation of E, as
determined for a “nominal” host type). The call (E1, E2) has a call
parameter yE1,E2 (= mean calls to E2 per invocation of E1). We
will only consider calls which block the caller (the calling thread
waits for the reply after the entry execution is finished), but LQN
can also model asynchronous calls and calls which are forwarded
along a chain of tasks for service.
Task T has a multiplicity mT and a host H(T). Host H has a
multiplicity mH and a speed factor SH (speed relative to the
“nominal” host type for which the demand values are found).
The actual demand of entry E on host H is dE/SH sec. The
capacity of the host is the product cH = mH SH, with units of
seconds of “nominal” execution per second; thus a single-core
nominal host has a capacity of 1.0. In general, entries accept calls
and also make calls to other tasks, usually at lower layers in a
layered system.
A special User task represents the system’s user population, with
a multiplicity mUser equal to the number of users. The User task
has a single entry, which may include a thinking time (a pure
delay ZUser) and one or more calls into the system. One User
entry execution corresponds to one user response from the
system.

 Figure 1: LQN model of a three-tier architecture [3]

Fig. 1 will serve as an example of the LQN notation. In this
figure, the LQN model has three tasks - Client, WebServer and
DBServer, each of which is deployed on its own host - ClientH,
WebH and DbH, respectively. There are 20 users modeled as the
20-multiplicity task Client running on the 20-multiplicity host
ClientH. Each user takes a 1000 ms think time (ZUser = 1000)

between requests. Both WebServer and DBServer are single
threaded tasks and each has two entries with host service
demands indicated in braces (i.e. webEntry1 has service demand
DwebEntry1 = 2 ms). A single user operation includes one request to
webEntry1 and two to webEntry2. Storage devices are not shown
but they can be modeled by a task representing the storage logic
(read, write operations for example) running on a host
representing the device.
This paper focuses its attention on LQNs with:

• a single User task (there can in principle be more,
representing different classes of user),

• calling patterns with no cycles in the call graph,
• no internal parallelism on execution paths,
• entries that complete execution before replying (there

is no “phase-2 execution” in LQN terms).

2.1 Performance Measures
The service time XE of entry E is the total mean time to complete
execution of the entry, including waiting and execution at its
host H(T(E)), and waiting for a reply for each call. Each call delay
in turn includes waiting for the called task to accept the request,
and the entry execution time. Thus XE is not known before the
queueing delays are found; it is this property that makes layered
system performance difficult to predict, and drives the use of
LQN models.
Some other performance measures predicted by LQN models,
that we will use, are

λE, λT = throughput of entry E and task T in
invocations/s.

UE, UT, UH = utilization of entry E, task T, host H,
where in this work utilization is defined as

UE = λEXE,
UT = ΣEUE,
UH = ΣT deployed on H ΣE in T λEdE/SH.

With this definition the utilization of a task or host ranges from
zero to its multiplicity value. We also use its saturation level
which ranges from zero to one, defined as

Saturation level of resource H = UH / mH.
Under heavy load the saturation of a bottleneck task or
processor approaches one. Under lighter load the most saturated
resource can be identified as the bottleneck.

2.2 Expectations for Aggregation
In aggregating LQN tasks and processors, we are aggregating two
kinds of things: queueing resources (the tasks and processors) and
customer classes (the entries of the tasks that are aggregated).
For queueing resources there is a well-established expectation that
overall queueing delays are reduced when resources are
aggregated together, which is well-known, for example, if a set of
identical servers with separate queues are merged into a
multiserver. However there are no comparable results available for
layered servers.
For class aggregation the expected tendency is in the opposite
direction. An LQN model includes many customer classes, for

 Client {20}

 request
 [1e-006]

 Z=[1000]

(1) (2)

ClientH
{20}

WebServer

webEntry1
[2]

(2)

webEntry2
[3]

(3)

DBServer

dbEntry1
[3.5]

dbEntry2
[4]

WebH

DbH

example, each different operation (entry) of a subsystem (task) is a
different class of service. In order to simplify the model it is
necessary to aggregate some of these classes, which introduces
errors. For certain multi-class queueing models, Dowdy et al
showed in [4] that a single-class aggregated model always has
lower overall throughput (and thus longer delay). Although their
result does not apply to the present models, this result suggests
that class aggregation at a server may give worse performance.
Thus the two kinds of aggregation may be expected to produce
opposite effects in the performance measures of the simplified
LQN.

3 Direct Task and Host Aggregation
We consider an original model M, and methods to aggregate some
tasks to produce a final model M’. The previous report [3]
described a process we will call Direct Aggregation, which
operates directly on the tasks of M. It stated three principles:

• Capacity limit principle: preserve the capacity limit of
the model by preserving the bottleneck element(s);

• Total workload principle: to preserve the total workload
(CPU operations) per user response; and

• Concurrency principle: to preserve the total concurrency
available in software and hardware.

If the host processors are homogeneous, the third principle also
preserves the total computing capacity of the system.
In [3] a 4-step procedure was defined to aggregate all the tasks
except the User, and any tasks identified as bottlenecks. It was
assumed that all operations completed before replying (no second
phase operations, in LQN terms) and this assumption is retained
here. For our purposes the first two steps of that procedure will be
called Stage 1, producing a Stage-1 aggregated model, and tasks
which are not aggregated will be called preserved tasks.
Stage 1 aggregates all activities and entries of a task Ti into a
single entry as described in [3]. Since each task now has only one
entry, we can without confusion label the entry parameters dE and
calls (E1, E2) by the task names, as demand dT and calls (T1, T2).
The aggregated host-demand and call values at Stage 1 are exact;
the queueing times in this Stage-1 model have some degree of
approximation error due to merging of classes, which was
however found in [3] to often be small.
Step 3 and 4 in [3] aggregate all the tasks except the bottleneck
and the User into a single task. Instead, this work identifies
additional possible preserved tasks, and one or more groups of
other tasks. It creates an aggregated task for each group, based on
the following additional principle:

• Dependency principle: the dependency of a preserved
task on each original task T will be preserved in M’ as a
dependency on the aggregated task that includes T.

This work also introduces a different process for aggregating a
group of tasks. In [3] this was done incrementally by adding one
task at a time; here each group is created in a single step.

4 Defining Groups of Tasks for Aggregation
The tasks that will not be aggregated (the preserved tasks) may
include:

1) Bottleneck tasks: It was shown in our previous work that
aggregating a bottleneck task together with others sometimes
gives poor accuracy, and this seems to be generally true. Also
the bottleneck is important in defining the saturation
properties of a system, so preserving it should preserve those
properties.

2) Other highly saturated tasks: If we intend to improve the
system by mitigating the bottleneck then another task may
emerge as a candidate “second bottleneck” and it would then
(for the same reasons) be desirable not to have merged that
task [3]. In general the candidates for bottlenecks are the
highest tasks in an ordering based on task saturation level.

3) Tasks subject to change: We may also choose to keep a task
out of aggregation if we want to study the effect of major
changes in that task,

4) Tasks with key measures: We would like to observe the
performance measures gathered for that task. In particular
the measures for the User task define the user-related
performance measures of the system, and it will always be a
preserved task.

5) Tasks deployed on bottleneck processors or highly saturated
processor: Tasks deployed on bottleneck processors also need
to be preserved since merging the task (deployed on
bottleneck processor) with other non-bottleneck tasks
requires merging the bottleneck processor with other non-
bottleneck processors. For the same reason as mentioned in
item (1) above for tasks, bottleneck processors are preserved
in this aggregation. In [3], it has been shown that merging a
highly utilized/saturated processor can degrade the accuracy.
So, we may preserve a second bottleneck processor as well as
the task(s) deployed on it. If there is more than one task
deployed on a bottleneck processor and none of them is a
bottleneck task, those tasks can be merged into one task and
preserved.

Before defining groups for aggregation we define a set TP = {TP1,
TP2, ...} of tasks to be preserved. We wish the performance
measures of these tasks to be well approximated in the aggregated
model. Therefore we define the groups to preserve the dependency
of the performance of the preserved tasks, on the tasks that are
grouped, according to the Dependency Principle above.

4.1 Tasks Grouped by their Dependencies
A task T may affect the performance of a preserved task TP
through delay dependency or by processor contention
dependency. Delay dependence arises if TP makes a blocking call
to T directly, or calls intermediary tasks with delay dependency on
T (that is, if there is a path of blocking calls from TP to T).
Processor contention dependency arises if T shares a processor
with TP. Here we focus on the effect of delay dependency by
restricting the original system to provide a separate host, (possibly
a virtual machine) for each task, to eliminate processor contention
dependency.

A blocking dependency of task T1 on task T2 in an LQ model is
created by existence of a call path from T1 to T2 (that is, there is a
direct call from T1 to T2 or indirect calls via one or more other
tasks). We will define this dependency relative to a set of
preserved tasks, as:
Definition: Task T1 is Preserved-Task Dependent (PT-Dependent)
on task T2 if there is a call path from T1 to T2 that does not pass
through a preserved task.

We will express this PT-dependency as T1 ≺ T2. We assume that
the system (and the layered model) does not have cyclical
dependencies. If task T1 has no dependency relation with T2 we
can write T1||T2.
For each task Ti its PT-dependency set Pi is then defined as

Pi = {P | P ≺ Ti}
Pi is non-empty for every non-preserved task Ti since every task
except the User may be called in executing the application,
therefore it always contains at least the User task.

Figure 2: LQN model showing tasks with PT-dependency set
{P1, P2}

Fig. 2 shows a model with three preserved tasks in the set TP = {U,
TP1, TP2}. The three shaded tasks all have the same PT-
dependency set P = {TP1, TP2}. The PT-dependency sets P, one for
each non-preserved task, partition the non-preserved tasks into
subsets G(P) which will be a basis for the groups for aggregation.
All the tasks in G(P) have the same PT-dependency set, and all
other tasks have different PT-dependency sets. The tasks in a
particular G(P) have an impact (through blocking calls) on just
those preserved tasks in subset P, and no others, and in M’ all
those blocking delay effects are captured approximately by

blocking calls to a single task TA(G(P)) created by aggregating the
tasks in G(P).
The groups and the aggregated tasks are illustrated in Fig. 3 by an
example “case-A” with three preserved tasks U, TP1 and TP2

(shown as parallelograms with bold borders). The tasks have four
different dependency sets: {U}, shown as tasks with no shading,
{TP1} as tasks with diagonal stripes, {TP2} as tasks with grey
shading, and {U, TP2} as the one task with diamond shading. Tasks
with the same shading form a group.
To simplify the model, each group is aggregated into a single task
running on its own processor, following the method in [3] as
modified in the following section. This gives the simplified model
in Fig. 4.

Figure 3: “case-A” showing groups defined by four distinct
PT-Dependency sets P = {U}, {TP1}, {TP2}, {U, TP2}

4.2 Desirable properties of the Aggregation
Groups

The model simplification described here is motivated by a desire to
preserve the essential components of the system, and to make the
results traceable back to these components, while merging the
elements that contribute less to the performance result. Direct
Aggregation as in [3] preserves for each group

• its total workload
• the total processing capacity available to it
• the maximum concurrency of execution threads and cores

What is new here is:

• there can be an arbitrary number of preserved tasks, giving
the modeller flexibility

• the dependencies of the preserved tasks are also preserved,
in the following sense. For every preserved task P and
unpreserved task T:
o If P depends on T, then in M’ P depends on a merged

task derived from a group containing T
o If T depends on P, then a merged task derived from a

group containing T depends on P.

e0 e1_0

t2
e2_0

t3
e3_0

t4
e4_0

TP1 TP2

{TP1,TP2}

{TP1,TP2} {TP1,TP2}

PT-Dependency
Group
G({TP1,TP2})

Groups G({U}) G({TP1}) G({TP2}) G({U,TP2})

U

TP1 TP2

U

Thus, if we can think of each task as contributing a shadow of
itself to its merged task, then there is a shadow of every non-
persistent task and the dependencies between the persistent
tasks and the shadows are preserved in M’.

5 Aggregation of a Group of Tasks
We consider a group or subset G of tasks T, each of which has one
entry (as produced by Stage 1 aggregation) and its own processor
(as assumed for this paper). T has demand dT and makes an
average of yT,Ti calls to each other task Ti, each time it is invoked.
An aggregated task TA(G) is substituted for G, with CPU demand
DA(G), and yTi ,TA(G) calls coming to TA(G) from each task Ti not
in G. The calculation of DA and y begins by finding Yi for each
task Ti in M:

Yi = mean invocations of Ti per user response, which will
be called the “total calls” to Ti.

Total calls Yi for each task Ti is found by setting YUser = 1 (for one
user response) and solving these equations for all tasks Ti in M:

Yi = Σi,j (Yj * yTj,Ti) for all tasks Tj calls Ti.
From this the invocations of G per user response (or “total calls” to
G) is YA(G):

YA(G) = Σ Ti ∉ G Σ Tj ∈ G Yi*yTi,Tj
Then the demand DA(G) is the total demand of G per user
response, divided by the number of calls to G:

DA(G) = ΣTj ∈ G (Yj * dTj) / YA(G)
The number of calls yTA(G), Tk from TA(G) to target task Tk ∉ G,
per call into group G, is defined by a weighted average of calls
from tasks Tj in G, weighted by Yj:
 yTA(G),Tk = (total calls from G to Tk)/total calls to G

= ΣTj ϵ G (Yj * yTj,Tk)/YA(G)
If the target tasks are also members of other groups, the number of
calls between groups is calculated directly as follows. The number
of calls from TA(G1) to a task representing another group, say
TA(G2), is yTA(G1),TA(G2), which is the sum of the calls from
TA(G1) over tasks Tk in G2, thus:
 yTA(G1),TA(G2) = ΣTk ϵ G2 ΣTj ϵ G1 [(Yj * yTj,Tk)/YA(G1)]
An aggregated host HA(TA(G)) is created for the aggregated task
TA(G), with processing capacity c and multiplicity m, equal to the
total capacity and multiplicity. In M’ the host HA(TA(G)) has the
properties:
 c HA(TA(G)) = Σ Tj ϵ G c(H(Tj))

m HA(TA(G)) = Σ{H(T) | Tϵ G} mH(T)
S HA(TA(G)) = cHA(TA(G))/ mHA(TA(G))

Fig. 4 represents an aggregated model of the original model “case-
A” in Fig. 3. The preserved tasks from the original model are
shown with bold borders. The aggregated model has 7 tasks and 7
processors whereas the original model in Fig. 3 has 21 tasks and 21
processors.

6 Dependency Grouping vs a Single Group
In [3] a single group of tasks was formed from all the non-
bottleneck tasks. This section shows examples which demonstrate
the improved accuracy obtained when using the dependency
groups proposed in this paper.

Figure 4: Aggregated model for “case-A” using the
dependency groups shown in Fig. 3

First example: Cycle introduced by aggregation
This example shows the value of the dependency groups proposed
here. Fig. 5 presents an LQN model called “case-11” with 11 tasks
and 11 processors. The bottleneck task is t3 with 89.81% saturation
level, shown with a bold outline.
Applying the previous aggregation algorithm [3], we get the
model in Fig. 6. In this model, the bottleneck task t3 and its
processor p3 are preserved and all other tasks except the user task
c0 are merged into one task (with one processor). This produces a
cycle in the call graph as seen in Fig. 6.
In comparing with the original model, the aggregated model
generates 100% System throughput error and 3.78E+10% System
response time error. In fact the calculation did not converge, the
solver just stopped. The model is structurally different and the
cycle creates a call explosion and an explosive increase in delay,
and drop in throughput.
The simplification algorithm of this paper gives the second
aggregated model shown in Fig. 7. The bottleneck task t3 is
preserved, and there are two groups of tasks in the model in Fig. 5
that are identified by the proposed aggregation algorithm. One
group is “below” the bottleneck (and produces the MergedTask0 in
Fig. 7) and the other group is “above” the bottleneck (and produces
MergedTask1 in Fig. 7).
To summarize the results:
Accuracy: Relative absolute error for “case-11”
Single-group: 100% in throughput,

3.78E+10% in response time
Dependency groups based on one bottleneck task:

23.55% in throughput,
19.06% in response time

Task aggregation based on groups provides a much better
aggregated model, although the error is still large.

c00
c00

c00*
MergedTask1

mergedEntry1

t01
e01_0 et04

p01*

mergedProcessor1*
MergedTask0

mergedEntry0

p04*

MergedTask2

mergedEntry2

mergedProcessor0*
mergedProcessor2*

MergedTask3

mergedEntry3

mergedProcessor3*

TP2

TP1

U

 Figure 5: LQN model of “case-11”

Figure 6: First aggregated model for “case-11” shown in Fig.
5, following the single-group algorithm of [3]

Figure 7: Second aggregated model for “case-11” (shown in
Fig. 5) by generating two groups preserving one bottleneck
task

Further examination revealed a second highly saturated task t2
(97.26% saturation level) in “case-11” in Fig. 5 shown in dashed
outline. Task t2 is a direct caller of the bottleneck task, saturated
due to pushback (waiting for service that is delayed by
congestion). Preserving both t2 and t3 gives the third aggregated
model shown in Fig. 8.

Accuracy: Relative absolute error for “case-11” (continued)
Dependency groups based on two highly saturated tasks:
 6.91% in throughput,

6.47% in response time
The saturation level of both of the preserved tasks remain
similar to the original model. Task t2’s and t3’s level of
saturation are 97.26% (same as original model) and 87.43%
(changed by 2%) respectively.
We can draw two lessons from this example, first that it may be
important to preserve more than one highly saturated task, and
second that the grouping should avoid aggregations that
introduce cyclical calls between aggregated entries. Cyclical
calling changes the structure of the system and totally distorts
the predictions.

Second Example: Bottleneck Processor
In the following, we discuss another LQN model “case-41” where
the model has a bottleneck processor.

c0

c0

c0*
t0

e0_0

t1

e1_0

t2

e2_0

p0*
t3

e3_0
p1*

t4

e4_0
p2*

p3* p4*
t5

e5_0

t8

e8_0

t9

e9_0

t6

et6

t7

e7_0 p5*

p8* p9* p6* p7*

c0

c0

c0*
MergedTask1

mergedEntry1

t3

e3_0
mergedProcessor1*

p3*
MergedTask0

mergedEntry0

mergedProcessor0*

c0

c0

c0*

MergedTask8

mergedEntry8

t3

e3_0

mergedProcessor8* p3*

Figure 8: Third aggregated model for “case-11” by generating
groups preserving two heavily saturated tasks

We compare the performance results of single group aggregation
with dependency grouping. As shown in Fig. 9, the model
contains 25 tasks and 25 processors along with a reference task

and its processor. In this model, the bottleneck is the processor
p09 with 78.35% saturation (shown in bold outline). The task
deployed on p09 is t09 (also shown in bold outline). Both t09 and
p09 are preserved in the aggregated model.
Applying the previous single-group aggregation algorithm [3],
we get the model presented in Fig. 10, in which the bottleneck
processor p09 along with its task t09 are preserved and all other
tasks except the user task c00 are merged into one task (and
their corresponding processors are merged into one processor).
In the model of Fig. 10 the System throughput error is 27.57%
and System response time error is 21.61%, which are substantial.
Analysis of “case-41” shows that there is a second bottleneck
task t05 (shown in dashed outline) having 98% saturation which
is a direct caller of the preserved task t09. Applying the
simplification algorithm using task dependency groups which
also preserves the second bottleneck, we get the aggregated
model as presented in Fig. 11, with 5 tasks and 5 processors
along with the reference task and its processor.
The results for the aggregation based on dependency group are
much better than those for single-group aggregation:
Accuracy: Relative absolute error for “case-41”
Single-group: 27.57% in throughput,

21.61% in response time
The saturation level of p09 is changed by 27%

Dependency groups based on two preserved tasks and one
bottleneck processor: 1.78% in throughput,

 1.77% in response time
The saturation of t05 and p09 are 98.33% (changed by 0.34%) and
79.76% (changed by 1.8%) respectively.

Figure 9: LQN model “case-41” with bottleneck processor p09 and its deployed task t09 in bold outline and second bottleneck
task t05 in dashed outline

c0

c0

c0*
MergedTask1

mergedEntry1

t2

e2_0

mergedProcessor
1* t3

e3_0 p2*

MergedTask0

mergedEntry0 p3*

mergedProcessor0*

c00

c00

c00*
t00

e00_
0 t01

e01_0

t02
e02_0

t03

e03_0

t04
e04 0

t05
e05_0

p00*
t07

e07_1 e07_0
t06

e06_0
t10

e10_0 p01*
t11

e11_0 p02*
t13

e13_0 e13_1 e13_2 p03* p04*
t08

e08_0

t14
e14_0 p05*

t09
e09_0

t12

e12_0

p07*
t17

e17_0 p06* p10* p11* p13* p08*
t18

e18_0
t16

e16_0 p14*
t15

e15_0 p09* p12*

t21

e21_
1

e21_0 p17* p18* p16*
t19

e19_0

t22

e22_0

t24

e24_0 p15*
t20

e20_0

t23

e23_0

p21* p19* p22* p24* p20* p23*

Figure 10: Aggregated LQN model for “case-41” (shown in
Fig. 9) following the single-group algorithm of [3]

Figure 11: Aggregated model from “case-41” of Fig. 9 by
generating groups preserving bottleneck processor and a
second bottleneck task

7 Empirical Evaluation of Simplification
Accuracy with Groups

This section describes experiments on groups of randomly
generated models, to explore the accuracy of the dependency
grouping strategy and to identify factors which may degrade the
accuracy. Models of different total sizes with random structure
and parameters were generated using the tool lqngen [5]. The
grouping algorithm was implemented to automatically simplify

the models, which were solved with the analytic solver LQNS
[5].
Table 1 shows the average absolute errors in system throughput
and response time for five groups of models of ten models each.
We run all 50 models with random number of users (call it X
users).
To investigate how the reduced model could be used for
sensitivity studies, the accuracy of predictions for a system with
twice as many users was also found, and is reported in the table.
During the generation of these models one additional case was
created that is treated separately below.
From the table we see that the average throughput error ranges
from 3.5% to almost 6% and average response time error ranges
from 3.4% to almost 5.5% for X users. There is no apparent
relationship between the model sizes and the average error.
For 2X users, the errors are mostly slightly larger, but sometimes
smaller, and in every case very little changed.

Table 1: Experiments with average throughput and
response time error

Random
LQN models

Throughput error (%) Response time error (%)
X users 2X users X users 2X users

10 models
with 10
tasks

4.5 5.47 4.8 5.25

10 models
with 15
tasks

3.5 3.45 3.4 3.47

10 models
with 20
tasks

5.82 5.95 5.37 5.59

10 models
with 25
tasks

3.52 3.56 3.48 3.53

10 models
with 30
tasks

5.01 4.33 4.75 4.15

Fig. 12 and 13 show the frequency of absolute System
throughput error (%) and absolute System response time error
(%) for 50 models and X users, as in Table 1. From the
histograms, we see that the frequency of System throughput
error ranges mostly from 2% to 4% and System response time
ranges mostly from 0 to 3%. They show that in general smaller
errors are more frequent than larger errors. From experiments
on these models, the maximum throughput error we found is
12.73% and response time error is 11.3%.
The results given so far understate the errors we found because
they ignore one outlier. This outlier gives unsatisfactory errors
in a case which occurred only rarely; this rare case must be
treated by an extended process which is discussed next.

One Difficult Case: Case X
One randomly generated case, which we shall call “case-X”, had
a much larger error when aggregated following the grouping
strategy: over 49% in response time and over 97% in throughput.
The initial model and simplification are shown in Fig. 14 and 15.
Inspection of the details suggests that the error arises partly
through aggregation of very different classes, both moderately

c00

c00

c00*
MergedTask22

mergedEntry22

mergedProcessor22*
t09

e09_0

p09*

c00

c00

c00*
MergedTask1

mergedEntry1

t05

e05_0

mergedProcess
or1* MergedTask0

mergedEntry0
p05*

t09

e09_0

t12

e12_0

mergedProcessor0* p09* p12*

Figure 12: Frequency of absolute System throughput error
(%) on the 50 models in Table 1

Figure 13: Frequency of absolute System response time error
(%) on the 50 models in Table 1

Figure 14: Original LQN model “case-X” with 10 tasks and 10
processors

Figure 15: First Aggregated model of “case-X” from Fig. 14
preserving task t2

heavily loaded, in one of the groups. This is an example of the
known threat of errors due to class aggregation. To deal with
this threat the method must preserve additional tasks. To show
that preserving additional tasks is effective, “case-X” was
aggregated repeatedly with one task added at each step to the
list of preserved tasks, with the results shown in Table 2. At each
step, the most saturated non-preserved task or processor was
chosen to be preserved. We see that we can obtain as small an
error as we wish.

Table 2: Errors of Different Aggregations of “case-X”

Preserved tasks Throughput error (%) Response time error (%)

{t2} 97.14 49.25

{t2,t0} 14.29 13.12

{t2,t0,t5} 8.57 6.8

{t2,t0,t5,t6} 0 0.12

8 Scalability
Since our goal is to simplify large models, a much larger and
more complex case is included here. Fig. 16 shows a model called
“case-50” with 50 tasks and 50 processors that was generated
randomly.

Table 3: Errors of Different Aggregations of “case-50”

Figure
Tasks and
Processors

Throughput
error %

Response time
error %

Figure 17 7 12.73 11.3

Figure 18 9 4.85 4.63

0
10
20
30

0-1 2-4 5-7 8-10 11-13 More

Fr
eq

ue
nc

y

Throughput Error (%)

Frequency of throughput error

0

10

20

0-3 4-5 6-7 8-9 10-11 More

Fr
eq

ue
nc

y

Response Time Error (%)

Frequency of response time error

c0

c0

c0*
t0

e0_0

t1

et1

t2
e2_0

p0*
t3

e3_0

t4

e4_0

t5

e5_0 p1* p2*

p3*
t6

et6

t8

e8_0

t9

e9_0 p4*
t7

e7_0
p5*

p6* p8* p9* p7*

c0

c0

c0*
MergedTask1

mergedEntry1

t2

e2_0

mergedProcessor1*

MergedTask0

mergedEntry0
p2*

mergedProcessor0*

The tasks outlined in bold were preserved based on high
saturation level. Fig. 17 shows a first aggregated model of “case-
50” with 7 tasks and 7 processors based on preserving only the
bottleneck task and other highly saturated tasks. If we preserve

the next most highly saturated resource which is processor p31
(47.92% saturated) and its deployed task t31 as shown in Fig. 18,
the error is reduced as shown in Table 3.

 Figure 16: LQN model of “case-50” with 50 tasks and 50 processors

c00
c00

c00*
t00

e00_0 e00_1 e00_2
t01

e01_0
t02

e02_0
t03

e03_0
t04

e04_0
t05

e05_0

t10
e10_0 p00*

t08
e08_1 e08_0 p01*

t09
e09_0

p02* p03* p04*
t07
e07_0 p05*

t06
e06_0

t11
e11_0

p10*
t13

e13_0
t15

e15_1 e15_0 p08*
t12

e12_0 p09*
t14

e14_0 p07* p06* p11*
t16

e16_0

p13*
t19

e19_0
t20

e20_0 p15*
t17

e17_1 e17_0 p12* p14* p16*
t18

e18_0

p19*
t24

e24_0 e24_1
p20*

t23
e23_0 p17*

t25
e25_0 p18*

t21
e21_0

t22
e22_0

t26
e26_0 p24* p23* p25* p21* p22*

p26*
t27

e27_0
t28

e28_0
t29

e29_0 e29_1
t30

e30_0
t31

e31_0 e31_1
t32

e32_0
t33

e33_0

p27* p28*
t35

e35_0

t40
e40_0

t36
e36_0 p29* p30*

t38
e38_0

t39
e39_0

t34
e34_0 p31* p32*

t37
e37_0 p33*

p35* p40*
t44

e44_0 p36*
t46

e46_0 p38* p39*
t42

e42_0 p34*
t43

e43_0
t45

e45_0 p37*
t41

e41_0

p44* p46*
t47

e47_0
t49

e49_1 e49_0 p42* p43* p45*
t48

e48_0 p41*

p47* p49* p48*

Figure 17: First aggregated model of “case-50” with 7 tasks
and 7 processors

The errors under the simplest task-preservation in the first case
are barely satisfactory; one improvement step gives a very
satisfactory accuracy.
The execution time of the aggregation algorithm was found to be
1.2 second on average, on a commodity PC.

9 Related Work
Various kinds of simplification methods have been used for
performance models, particularly for queueing models. There is
a powerful and much-used simplification result in the Norton
Theorem for Queues [6] which applies to product-form queuing
networks. By this theorem any subnetwork of queues can be
replaced by a single server with a state-dependent service rate.
The replacement is exact in the sense that the throughput and
delay at the subnetwork interface is the same for the single
server [3]. The original result was for a single class of customers,
and it was extended to multiple classes in [7].
A flow-equivalent server (FES) [8] is a generalization of this.
When any submodel is replaced by a FES the entire model is
smaller and easier to solve, and parameter changes outside the
submodel can be studied efficiently. Outside of product-form
queueing networks the simplification is approximate. The FES
construction method isolates the subnetwork and drives it with a
fixed number of customers, cycling endlessly; the mean delay of
a customer in the subnetwork is taken as the service time of the
FES for that number of customers. This is repeated for every user
population that it may experience, which does not scale well to
large systems with thousands of customers [3].

Figure 18: Second aggregated model of “case-50” with 9
tasks and 9 processors

Hierarchical decomposition as described in [8] applies this
systematically. In hierarchical decomposition, a large model is
partitioned into a number of submodels. Each submodel is then
evaluated and individual solutions are combined to get the
solution of the original model [8]. In this technique, the system
is modeled using multiple levels of models. The highest level
(level 0) of the models consists of a number of FESs, each of
which represents some portion of the system being modelled.
The following level contains a number of models that are more
detailed representation of a subsystem represented in the first
level as an FES. In general, every level in the hierarchy contains
more detailed representation of the submodels from previous
level until the final level (Level L) where all models are fully
detailed and do not have any FESs. The models in hierarchical
decomposition should be evaluated from level L to level 0 so that
the performance projections for the system being modeled are
obtained from its solution.
Surrogate delay methods (e.g. [8]) replace a subsystem by a delay
which is found by solving an auxiliary model. A surrogate delay

c00

c00

c00*
MergedTask2

mergedEntry2

t01

e01_0

t04

e04_0

mergedProce
ssor2* MergedTask3

mergedEntry3
p01*

MergedTask0

mergedEntry0
p04*

t07

e07_0

mergedProcessor3*
MergedTask1

mergedEntry1
mergedProcessor0* p07*

mergedProcessor1*

c00

c00

c00*
MergedTask3

mergedEntry3

t01

e01_0

t04

e04_0

mergedProce
ssor3* MergedTask4

mergedEntry4
p01*

MergedTask1

mergedEntry1
p04*

t07

e07_0

mergedProcessor4*
MergedTask2

mergedEntry2
mergedProcessor1* p07*

mergedProcessor2*
t31

et31

p31*
MergedTask0

mergedEntry0

mergedProcessor0*

is somewhat like a FES, but with a fixed delay rather than a
state-dependent rate. However the construction method is
different and requires an iterative solution which includes the
auxiliary model. Surrogate delays are most useful to address
problems of simultaneous resource possession, but they can also
be used for model simplification.
When performance models are fitted by regression methods as in
[9], a choice must be made for the model structure including the
level of detail in the model. The modeler can compare the
goodness of fit of models with more or less detail. Regression
thus automatically raises the question of detail, and can answer
it through tests of goodness of fit as discussed in [9]. However
this approach cannot be applied to models constructed from a
design before a system is built, because it requires operational
data for the regression.
In the Shadow Server method, one service node that violates
conditions required for efficient, exact analytic solution in
queuing network model is replaced by two or more servers that
enable efficient analytic solution, such that the performance
represents the original server [10]. As an example, a CPU server
with a priority queue-scheduling discipline can be replaced with
a shadow CPU server for each priority class, with jobs of
different priorities being routed to different servers. However,
this technique does not generate a simpler and smaller model
than the original one.
The authors in [11] proposed an estimation technique for
performance parameters in web based software systems. For web
based applications, they use a combination of clustering
algorithm and tracking filter for effective grouping of classes of
services in layered queuing models. Clustering uses the K-means
algorithm. The target application is autonomic control of web
clusters. They considered the application URLs as first class
entities and each URL request as a class. Their proposed tracking
approach identifies performance parameters of groups of URLs
instead of individual URLs. They proposed an algorithm that
finds the appropriate number of clusters with a pre-defined
clustering accuracy. For example, if one can accept 17% error, the
number of needed clusters for estimation would be dropped from
14 to 9 on average.
Overall, we are unaware of any prior work on deriving a
simplified layered queuing model directly from a detailed one,
apart from our own paper [3]. In particular, there is a lack of
simplification techniques that avoid the scalability problems of
calibrating a FES.

10 Conclusion
In this paper, a simplification method for LQN model is
presented which is an improved version of previous work of the
authors [3]. In this new method, groups of tasks to be aggregated
are determined based on the dependency relationships between
the tasks in the groups, and a set of “preserved tasks” which
should include at least the users and a bottleneck task. The paper
defines grouping criteria and shows by experiments on
randomly generated models of various sizes that the throughput
and response time errors are less than 10% in the vast majority
of cases. In every case the error can be reduced by adding

preserved tasks, based on their relative saturation, and can be
made as small as desired (at the cost of a larger simplified model
and more complex simplification). The best strategy for adding
preserved tasks is the subject of current additional research.
This work has considered only systems with a single class of
users, and system modules (“tasks”) that do not share a host
processor. This latter is in line with the practice in cloud
deployments of giving each module its own virtual machine.
However current work is considering shared hosts. The
grouping has also only considered delay dependencies; current
work is also considering host dependencies.
The grouping strategies described here address a fundamental
problem of the required level of detail in modeling, and could be
applied far beyond the domain of LQN performance models, to
adjust the detail level of an analysis in real time.
The LQN models used in the cases of this paper can be found at
https://github.com/FarhanaIslam/lqnmodels.

ACKNOWLEDGMENTS
This research was supported by grants from NSERC, the Natural
Sciences and Engineering Research Council of Canada, through
its Discovery Grants program.

REFERENCES
[1] Murray Woodside, Dorina C. Petriu, José Merseguer, Dorin B. Petriu,

Mohammad Alhaj. 2014. Transformation challenges: from software
models to performance models. Software and Systems Modeling, 13, 4
(Oct 2014), 1529-1552. Published online Oct 2013. DOI:
https://doi.org/10.1007/s10270-013-0385-x

[2] Steffen Becker, Heiko Koziolek, Ralf Reussner. 2009. The Palladio
component model for model-driven performance prediction. Journal of
Systems and Software, 82, 1 (January, 2009), 3–22. DOI:
https://doi.org/10.1016/j.jss.2008.03.066

[3] Farhana Islam, Dorina Petriu, Murray Woodside. 2015. Simplifying
Layered Queuing Network Models. In Computer Performance
Engineering: 12th European Performance Engineering Workshop (EPEW
2015), Springer LNCS 9272, 65–79. DOI:
https://doi.org/10.1007/978-3-319-23267-6_5

[4] Lawrence W. Dowdy, Brian M. Carlson, Alan T. Krantz, Satish K.
Tripathi. 1992. Single-Class Bounds of Multi-Class Queuing Networks,
J.A.C.M, 39, 1 (Jan 1992), 188-213. DOI: 10.1145/147508.147530

[5] Layered Queuing Network homepage. Retrieved from
http://www.sce.carleton.ca/rads/lqns/.

[6] K. M. Chandy, U. Herzog, L. Woo. 1975. Parametric analysis of queuing
networks. IBM Journal of Research and Development, 19, 1 (January
1975), 36-42. DOI: 10.1147/rd.191.0036

[7] P. S. Kritzinger, S. V. Wyk, A. E. Krzesinski. 1982. A generalization of
Norton’s theorem for multiclass queueing networks. Performance
Evaluation, 2, 2 (July, 1982), 98-107. DOI: https://doi.org/10.1016/0166-
5316(82)90002-5

[8] Edward D. Lazowska, John Zahorjan, G. S. Graham, Kenneth C. Sevcik.
1984. Quantitative System Performance: Computer System Analysis
Using Queueing Network Models. Prentice Hall.

[9] Murray Woodside. 2008. The Relationship of Performance Models to
Data. In Proc. International Performance Evaluation Workshop (SIPEW),
Springer, Lecture Notes In Computer Science, 5119, 9 – 28. DOI:
https://doi.org/10.1007/978-3-540-69814-2_3

[10] Connie U. Smith. 1990. Performance Engineering of Software Systems.
Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA,.

[11] Hamoun Ghanbari, Cornel Barna, Marin Litoiu, Murray Woodside, Tao
Zheng, Johnny Wong, Gabriel Iszlai. 2011. Tracking adaptive
performance models using dynamic clustering of user classes. In Proc.
Int. Conf. on Performance Engineering (ICPE '11), Karlsruhe, 179-188.
DOI: 10.1145/2160803.2160823

https://github.com/FarhanaIslam/lqnmodels

